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ON AN INTEGRAL EQUATION Of CONTACT PROBLEMS OF ELASTICiTY 
THEORY IN THE PRESENCE OF ABRASIVE WEAR* 

E.V. KovALENKo 

An algorithm based on the method of matched asymptotic expansions and 
enabling one to avoid mathematical incorrectness is proposed for solving 
the integral equations of contact problems taking abrasive wear of the 
surfaces of contiguous bodies into account. An exact solution is written 
for the convolution type integral equation of the second kind with a 
logarithmic kernel in a semi-infinite interval in the class of continuous 
functions that vanish at infinity. 

A mathematical inaccuracy is committed in solving the integraleguationsofcontactproblems 
of elasticity theory in the presence of abrasive wear (/l-4/, etc.). The quantity characterir- 
ing the contact pressure distribution law and have a singularity of the square-root type for 
t=o at the ends of the contact domain /5/ was expanded in a Fourier series in the efgen- 
functions of a certain self-adjofnt ccmpletely continuous integral operator acting in a space 
of square-susnaable functions. However, as follows from the general theory of Fourier series 
in Hilbert spaces /6/, such a series will be known to be divergent in the norm of the space 

.L (-i,i). 
The approach proposed below enables one to avoid this mathematical incorrectness and in 

conjunction with the method in /7,8/ enable a solution of the contact problems mentioned to 
be constructed in the whole range of time variation. The closed solution of the convolution 
type integral equation of the second kind with logarithmic kernel in a semi-infinite interval 
can also be used to investigate contact problems for rough elastic bodies (or to study contact 
problems in the presence of thin elastic coatings) /9/ when the coefficient of the main term 
of the integral equation tends to zero. 

1. The initial equations of the contact problem of elasticity theory for a linearly 
deformable base of general type in the presence of abrasive nwear can be written in the form 

/4/ 

(1.2) 

The piecewise-smooth function y(t)>O(Ogt< T) and the kernel k(z) of the integral 
equation (1.1) is representable in the form 

k(o)= 1 L(u)cos(uz)du. I = +- (1.3) 
0 

L (u)> 0. (I u I < cc), L(u) = A + 0 W) (u -0, A = comt) 

L(u)= u-1 +O(tr') fs - oo)l 

The analysis presented below refers to the case of an even function f(t). The general 

case is considered analogously. 
On the basis of (1.3), the following lemma is proved /5/: 

Lemna. For all values of O<lzl<m the following representation holds for k (2) 
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k (4 = -la 1 z I - F(z), F (4 -B (E -* 0, B = con&)! 

where F (z), as an even function of the complex variable tu=2+iL, is regular in the strip 

[r f<cD, / & 1 <x(0 <x= const). 
We now construct the solution of (1.1). We introduce the small parameter *(eel) and 

rewrite (1.1) in the form 

(1.5) 

The solution of the integral equation (1.5) is found in /7,8/, hence, we shall not 
construct it here. 

We investigate (1.4) by the method of matched asymptotic expansion /lo/. We assume that 

V(t) = V (8) + 0 (e), 'p (2, t) = cp (5, e) f 0 (e) (t = IO, 4, 84 i) (i.6) 

Later, without loss of generality, we set V(E) = 1. Then by substituting (1.6) into 
(1.4) and neglecting infinitesimals of ordex .G, we obtain 

We shall limit ourselves to the construction of the principal (zeroth) term of the 
asymptotic form of the solution of (l.,7), To do this, we consider its equivalent integral 
equation in place of (1,7) 

Setting e= 0 in (1.8), we write down the degenerate integral equation of the problem 
as e-o 

(f.8) 

or equivalently 

(1.7) 

(1.9) 

(i.10) 

As is known /5/, if f(z)= B,"(---i,I)(Bxa(-i,l) is the space of functions whose n-th 
derivatives satisfy the Holder condition with index a,O<a<l) for rerl--i,ll, the function 
cpO(z) has the form 

R(z)= tie& I @(4 E C(-Li) (1.11) 

We understand the exterior domain to be the interval /zl(i -me in which the degenexate 
solution of (1.11) can be taken as the solution of (1.8) with a sufficiently small error. We 
call small neighbourhoods of the points += fl with the dimensions pe(nk> f) interior 
domains; the influence of the wear on the contact stress distribution under the stamp in 
these domains is commensurate with the influence of the deformability of the elastic base. 
Solutions of boundary-la.yer type that can be matched with the degenerate solution o0 (2) on 
the domain boundaries Z= 1 -mu and I= -l+me should be constructed in the interior 
domains, 

Let us find the difference between (1,8) and (1,9) 

(1.12) 

Taking into account that we have oo(i- ms)= o(i-)(2me]"' for mee:l and the function 
v (2, E) is matched with Q(X) on the boundary I= i-me of the exterior and intesior domains, 
we will seek the solution of boundary-layer type in the neighbourhood of the point Z= i in 
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the form of 

cp (2, e) - 9 (s) e -'I, + 0 (e-y, S = (1 - .T) e-1 

Then the matching conditions take the form 

cp (1 - me, e) = e-'f*q fml:; (0) - v* (1 - ns) = 0 (t)(2mc)-"4 

It hence follows that 

l.13) 

P f@ - 1, q (ml - rn-'~' (m > i), * (0) = 0 (I)&5 (1.14) 

Substituting (1.13) into (1.12) I going over to the new variables I,Z = (1 - E)e-' and 
letting B tend to zero for fixed s and a&ci, we obtain the following integral equation to 
determine the boundary-layer type function q(s) (by virtue of the evenness of the function 
under consideration in z and in the neighbourhood of the point Z= -1) 

(1.15) 

Rere the representation for k(r) mentioned in the lemma and the value of the integral 
/II/ 

for p='l. are used. 
After having solved (1.10) and (1.15), by virtue of (1.14) the principal term of a 

uniformly suitable asymptotic solution of th8 integral equation (1.7) or (1.8) can be 
represented for small values of the parameter e in the form 

‘pub. d=&+(r)- -q(dF+~)l+$=g[q(qq+,(+=)j . (1.16) 

The constant o(1) can here be associated with ~(0) or with P(0) by using (l.lO),(L.ll) or 
(1.2) for t= 0. 

2, We will examine the questions of constructing the solution of the 
(1.15). We differentiate both sides with respect to s. We obtain 

m 

9’ (4 + $ s dz 
flW---- T---f 

=o (O<s<m) 
0 

We seek the solution of the homogeneous equation (2.1) in the form of 
/llf (the contour L is the line Rep= p) 

Let us substitute (2.2) into (2.1) and take the value of the integral 

ca 

s +& dT = m-p ctg xp W<Rep<l) 

into account. 0 

we then rewrite (2.1) in the form 

& 
* 

PQ (P) s-- dp - & 1 Q (p) ctg xp s-p dp = 0 
L 

integral equation 

(2.1) 

a Mellin integral 

(2.3) 

We use the notation pQ (p)= u(p), replace the argument p in the first integral of (2,3) 

by p---i, shift the contour L by one along the real axis and denote it by L1. We will have 

1 * 
x u(p-l)s-pdp=e& s . s ctg nP 

U(P) p s-Pdp 
L. L 

(2.4) 

We assume that the function u(p)is regular in the strip p--l Q RepQp and tends to 
zero as IIm pf-+oo. Then by the Cauchy theorem , without changing the integrand in the first 

integral of (2.4), it is possible to write L in place of L, and to satisfy relationship (2.4) 
by solving the first-order difference equation 

fJ (P - 1) - p-1 ctg npu (p) = 0 (p E L) (2.5) 

Let us select the number p in such a way that the coefficient of (2.5) (i,e,, the 
function P-lctgnp) would have no zeros (O<P<~/~) in the strip, O<Rep<R. In this case 

the canonical solution of the homogeneous equation (2.5) can be obtained by the Barnes 
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method /12/. 
The uniqueness of the solutions of difference equations of the type (2.5) is established4 

exactly the same way as the uniqueness of the Riemann boundary value problem /13/. 
Faking account of the condition imposed above on the function u(p),we write it in the form/14/ 

11 (p) = CI'* (1 + p)R (p) (C = const) (2.6) 

from which we find the function Q(p) by virtue of the relation presented earlier between Q(p) 
and u(p). 

Let us set up the asymptotic form of the desired function q(s) in (2.2) as s-0 and 

s-co. We note that for s<l the integral (2,2) is expanded in an absolutely convergent 
series in residues at the poles of the function Q(p), continued analytically into the left 
half-plane Rep < p. The value of the function q(s) as s-0 is determined by the first 
term of this series and has the form q(O)= C. 

For s>i the integral (2.2) is not expanded in a residue series. In this case the 

asymptotic form of the function q(s) is established-for large values of s by using an algorithm 
proposed in /15/. Namely, by limiting ourselves to the first term in the asymptotic form, 
we obtain from (2.2) and (2,6) 

q (S) = ctk-“1 + 0 (S-1) (2.7) 
6 = --C-l lim tg np (p + I/*) u (p) = i (p + -I/*) 

The solution of (2.2),(2.6) evidently satisfies the initial equation (1.15) apart from 
a constant. However, by utilizing the arbitrariness of the selection of C, it may be that 
this solution will simultaneously also be the solution of the integral equation (1.15). 

Theorem. If q (5) - s-“’ (8-m) and Is(s) I<M (M= const) in (1.15) for all values ~E[O,CO), 
then q(O)= 1. 

For the proof we estimate the integral 

42.8) 

for small values of the variable s. We assume that the constant M, in (2.8) is such that 
q(T) -‘cm’I’ in Jl. Then if s-0, we have 

Furthermore, representing I, in the form 

and using the estimate 

I J, I < 2Ms In 2, I J, I < MS 11 + In W,ls)ll 

we find that J-O as s-0, and therefore, q(O)= 1. 
It follows from the theorem proved that the constant is C= 1, and therefore, the 

function (2.2),(2.6) satisfies integral equation (1.15). We note that for such a selection 
of the arbitrary constant, the matching conditions (1.14) are satisfied autcanatically. 
Therefore, (2.2),(2.6) allow solution of the integral equation (1.15). This solution will be 
general in the class of functions possessing the properties mentioned in the theorem if the 
homogeneous integral equation corresponding to (1.15) has only a trivial solution. This 
last fact can be verified by taking account of the mutual relationships between the integral 
equation (1.15) and the 'problems examined in /14/. 

3. We still note that the two fundamental variations of problem (1.1),(1.2) are of 
interest in practice: 1) given the function y(f), find cp(z,t), P(t), 
the functions 

and 2) given P(t), find 
q (x7 t) and Y (0. 

We will examine the first case. We assume that the settling of the points of the base 
7 (t) is such that in the neighbourhood of the point t= 0 it can be expanded in a Taylor 

*Bantsuri, R.D. Contact problems of plane elasticity theory and associated boundary value 
problems of function theory. Doctorate Dissertation, 
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series . Limiting ourselves to the first two terms of this series, we will have 

Y (0 = y (0) + Y' (0) t (t = W, 4) (3.1) 

Now substituting the function g,,(z,t) from (1.16) and y(t) from (3.1) into the integral 
equation (1.71, we rewrite the latter in the form 

(3.2) 

As was noted above, the constant o(i) in (1.16) can be related to y(O) by means of (l.lO), 
(1.11). Therefore, (see (1.2) for t= 0). the value of the function P(t) depends only on y(O) 
for t=O. We substitute (1.16) into relationship (3.2), integrate it with respect to I 
between the limits -1 and +I and use (1.2),(1.11),(1.16). We obtain 

(3.3) 

We therefore establish a relationship between P(a) and y'(O). 
Now, if its is assumed that the force P(t)acting on the stamp is given, then by using 

(l-2) at t=O and (1.11) ,.we find the value of the constant o(t) by relating it to the value 

P (0). Then substituting (1.11) into (l.lO), we determine the constant y(O) by relating it, 
as above, to P(0). Now using relationship (3.3), we find y'(O) as before by relating it to the 
value of P(t) for t= e. Finally, taking (3.1) in the computation , we obtain an expression 
to determine rigid displacement of the stamp y(t). Moreover, if (1.5) and the algorithm in 
/7,8/ are furthermore used, the solution of the problem formulated can be obtained in the 
whole range of time variation, i.e., for O<tg T<m. 

The method in this paper can also be used to investigate contact problems for rough 
elastic bodies (or contact problems in the presence of thin coatings /9/, when the coefficient 
of 
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the principal term in the corresponding integral equation tends to zero). 
The author is grateful to V.M. Aleksandrov, B.M. Nuller and M.B. Ryvkin for their interest. 
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